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Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fast-
response gas-monitoring systems. However, the conventional plasma discharge system is bulky, operates
at a high temperature, and inappropriate for volatile organic compounds (VOCs) concentration detection.
Therefore, we report a machine learning (ML)-enhanced ion mobility analyzer with a triboelectric-based
ionizer, which offers good ion mobility selectivity and VOC recognition ability with a small-sized device
and non-strict operating environment. Based on the charge accumulation mechanism, a multi-switched
manipulation triboelectric nanogenerator (SM-TENG) can provide a direct current (DC) bias at the order
of a few hundred, which can be further leveraged as the power source to obtain a unique and repeatable
discharge characteristic of different VOCs, and their mixtures, with a special tip-plate electrode configu-
ration. Aiming to tackle the grand challenge in the detection of multiple VOCs, the ML-enhanced ion
mobility analysis method was successfully demonstrated by extracting specific features automatically
from ion mobility spectrometry data with ML algorithms, which significantly enhance the detection abil-
ity of the SM-TENG based VOC analyzer, showing a portable real-time VOC monitoring solution with
rapid response and low power consumption for future internet of things based environmental monitoring
applications.

� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Volatile organic compound (VOC) is an organic chemical with a
high vapor pressure at room temperature, making it easy to evap-
orate or sublimate in the compound molecules to the surrounding
air due to its low boiling point [1–3]. Owing to the high demand in
manufacturing, VOC plays a paramount role in various industrial
fields, including chemistry, agriculture, and semiconductors,
resulting in a large amount of VOC gas by-products existing in
the working and living environment. However, some VOCs are
harmful to the environment, and long-term exposure to these
VOC gases causes health issues, i.e., sensory irritation and chronic
diseases. Thus, the detection technology of VOCs with high sensi-
tivity, good selectivity, and fast response is indispensable for the
security monitoring of the industrial environment and personal
healthcare applications [4]. Current commercial VOC sensors and
analyzers are commonly based on the mechanisms of oxide semi-
conductor, optics, electrochemical, etc. [5–14], which are typically
developed for a certain range of VOC species and concentration,
and limits in response speed and selectivity. Besides, the conven-
tional plasma analyzers are bulky and operate in strict environ-
mental conditions high temperature and low pressure, restricting
their applications in the internet of things (IoT) sensing framework,
where small sensor nodes operating in normal indoor/outdoor
environments with low power consumption are preferred.

The ion mobility-based method is a well-known analytical tech-
nique for identifying and quantifying gas-phase compounds to
implement the fast response detection for various species, which
has been widely applied in areas such as process and quality con-
trol, food quality, medical diagnostics, biology, security, and mili-
tary purpose [15–20]. It is a method of characterization by

https://doi.org/10.1016/j.scib.2021.03.021
mailto:elelc@nus.edu.sg
https://doi.org/10.1016/j.scib.2021.03.021
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib


J. Zhu et al. Science Bulletin 66 (2021) 1176–1185
various ion mobility patterns based on different gas compositions.
To improve the sensing ability, different power sources, including
ultraviolet light and b-radiation, have been adopted to ionize dif-
ferent kinds of molecules [21,22]. However, these external ionized
power sources increase the cost and instability of the whole sens-
ing system, and the strict constraints of the operating environment
(e.g., vacuum or low pressure) dramatically restrict its industrial
development [23–25]. Moving forward to the wireless sensing net-
work under the IoT framework, small sensor nodes with a portable
power source that can operate in the normal environment have
become the new trends in ion mobility spectrometry sensing
[26–29]. In this regard, with the coupling of triboelectric and elec-
trostatic induction, the triboelectric nanogenerator (TENG) (first
proposed in 2012) can harvest energy from various vibration
sources [30–42] and produce high voltages without any sophisti-
cated electronics [43–56]. TENG also presents its universal adapt-
ability to all physical and chemical sensing scenarios with a self-
powered strategy [57–67]. With the achievable output power from
TENGs, the contact electrification-based gas sensor for VOCs was
obtained with ability of power-free and highly selective gas sens-
ing [68–72]. However, the existing TENG gas sensor (contact
electrification-based) shows dramatically sensing limitation in real
applications due to its instability output voltage and slow response
(>100 s). To date, no persuasive research has been conducted based
on the advantages of TENG-induced (portability and high-voltage
output) plasma ion discharge for VOC detection [73–85].

In addition, with the development of the fifth-generation (5G)
cellular network technology, artificial intelligence (AI)-enabled
data analytics can be conducted at the cloud server to realize
new artificial intelligence of things (AIoT) technology, where dis-
tributed low-cost and small sensor nodes collect sensory informa-
tion and send them wirelessly to the cloud for machine learning
(ML) assisted data processing and analysis [86–92]. Therefore,
not only the power consumption but also the size of sensors are
significantly reduced at the sensor nodes. The ML-enhanced
method has been proven as an efficient tool to realize fast and
high-accuracy gas recognition by extracting their specific features
automatically from the sensing output with ML algorithms, saving
a lot of manual interpretation and real-time calculation costs.
Besides, ML provides a possibility to analyze and distinguish com-
plex VOC gas mixtures. With the future 5G and AIoT technologies,
the demand for self-powered ML-enhanced VOC sensors will
increase in both the industrial and personal healthcare applica-
tions, where small portable real-time VOC-monitoring sensors
with rapid response, high accuracy, and low-power consumption
are needed.

Based on the above considerations, we proposed an ML-
enhanced self-powered ion mobility sensing method with multi-
switched TENG as the power source for various VOC species detec-
tion, i.e., methanol, ethanol, acetone, and isopropyl alcohol (IPA).
This method shows the advantages of portable, self-powered, and
fast response, and has no strict constraints of the operating envi-
ronmental conditions compared with the conventional gas ana-
lyzer. High voltage was easily obtained and sustained by the
special multi-switched manipulation of the TENG device based
on charge accumulation mechanism, whose output voltage was
further leveraged with a special type of tip-plate electrode config-
uration to obtain the plasma discharge of various VOC molecules.
Based on the unique features, i.e., the number of peaks, frequency,
and amplitude, of the ion discharging patterns, different VOCs can
easily be identified. To further improve the VOC detection
accuracy, a customized ML-enhanced tool was well developed to
classify different VOC concentrations automatically based on
specific features extracted by ML algorithms. It demonstrates that
the proposed multi-switched manipulation platform enables the
detection of multiple gas species by analyzing the corresponding
1177
time-domain ion mobility spectrometry with an ML-enhanced tool
for fast and early VOC detection under on-strict environmental
conditions.
2. Experimental

Three types of multi-switched manipulation of triboelectric
nanogenerator (SM-TENG) were fabricated with a unit of contact
friction area 10, 24, and 49 cm2, respectively. The SM-TENG con-
tains the bottom fixed plates (dielectric ‘‘A” and ‘‘C”) and the top
pair of movable plates (dielectric ‘‘B” and ‘‘D”). The materials of
the triboelectric dielectric plate were poly(methyl methacrylate)
(PMMA) and fluorinated ethylene propylene (FEP), respectively.
The dielectric ‘‘A” and ‘‘C” are PMMA or polytetrafluoroethylene
(PTFE), and the top movable pair of plates dielectric ‘‘B” and ‘‘D”
are FEP. Notably, the triboelectric polarity materials (PMMA and
FEP) in charge distribution are extremely large. The charge prop-
erty distribution PMMA material is positive in series, whereas
FEP or PTFE is triboelectric negative [93]. The PMMA dielectric pre-
sented positive surface charges when it contacts with FEP (nega-
tive charges) in operation. The multi-switched were produced by
nickel conductive porous cloth due to mechanical robustness with
‘‘on” or ‘‘off”. For the convenience of the fabrication to SM-TENG,
the connection wires were made of nickel textiles. The substrate
of the SM-TENG was made of an acrylic plate, which was cut by
a laser cutting machine. The different thickness of the PMMA film
was chosen as 1, 2, and 3 mm, respectively. Finally, the entire com-
ponent was assembled to form the SM-TENG. The FEP and PTFE
films are of ~220 and ~300 mm thicknesses, respectively. Because
of the need for mechanical robustness and system integration,
the electrode attached to the backside of the dielectric film was
made of nickel conductive textile as well. The gas pre-mixture
chamber was designed for the mixture of the VOCs species. The
calibration sensor was used to identify the specific concentration
of the mixture gas with different VOCs. The mass flow controllers
(MFCs) were connected to the VOCs gas measurement chamber
to provide the inlet mixture of VOC gases. To improve the accuracy
of the VOC concentration, the gas chamber was well-sealed during
the operation. The SM-TENG was used to provide the high-voltage
power source for the needle-plate electrode configuration. The
oscilloscope was connected to the plate electrode collector to
record the dark current response during the sliding of SM-TENG.
3. Results and discussion

3.1. Ion mobility and multi-switched manipulation of TENG for ML-
enhanced VOCs

Gases consisting of particles (molecules or atoms) are always in
random motion, which surround human beings in a dynamic bal-
ance state. However, VOCs from waste materials are harmful to
the human body, easily resulting in eye itching, heartbreak, or
headache. This situation is severe for those in chemistry or materi-
als research laboratories (Fig. 1a), where plenty of organic chem-
istry solvents evaporating from beakers can result in potential
risks. To identify the VOCs in such scenarios, the phenomenon of
ion mobility from the plasma discharge meets the requirement of
fast detection and convenience. The sensing mechanism based on
the drift time of ion mobility is illustrated in Fig. 1b. Various VOC
species and their concentrations can be well-identified based on
the transient dynamics of ion mobility patterns, which come from
the weight and volume of different ions in drift. To reach the high-
voltage output without any external battery and motivated by the
logic of the charge accumulation from the natural world (such as
the lighting), SM-TENG was developed based on the Bennet dou-



Fig. 1. (Color online) Machine learning (ML)-enhanced volatile organic compounds (VOCs) analyzer using ion mobility from multi-switched manipulation of a triboelectric
nanogenerator (SM-TENG). (a) The source of VOCs in lab and VOC molecules. (b) The ion mobility of VOCs in a strong electric field and their drift time. (c) 3D diagram of SM-
TENG and the ion mobility for VOC detection. (d) The operation mechanism of the Bennet doubler based on multi-switched manipulation for charge accumulation. (e) ML-
enhanced ion mobility for VOC detection.
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bler. Afterward, leveraging the output voltage in a special type of
tip-plate electrode configuration, a wide range of VOC molecules
detection using ion mobility from SM-TENG was proposed
(Fig. 1c). The ion mobility characteristics in the VOC chamber pre-
sent the different transient phenomena with a variety of VOC spe-
cies and their concentrations. The discharge phenomenon in nature
is a complex process involving the dark, glow, and arc discharges
(Fig. S1 online). The dark discharge shows a much sustainable out-
put than the glow and arc discharges during the VOC detection due
to its stable output and low power consumption.

The operations of multi-switched manipulation (‘‘on” or ‘‘off”)
in time sequence are explained to describe the working mecha-
nisms of the Bennet doubler (Fig. 1d) [94,95]. Both triboelectric
effect and electrostatic induction generate initial charges onto
dielectrics ‘‘A” and ‘‘B”, and electrode ‘‘B”, which is located at the
backside of dielectric ‘‘B” will be charged with the same quantity
but opposite charges. Owing to the surface interface effect of the
triboelectric dielectric materials and the charge transfer in ‘‘C”
and ‘‘D”, the multi-switches will operate between ‘‘on” and ‘‘off”
action, resulting in a continuous charge accumulation onto the
electrode ‘‘A”. Thus, the charge manipulation in the time sequence
would convert the mechanical energy to electric energy by leverag-
ing the accumulated charge onto dielectrics ‘‘A” and ‘‘B” from the
ground. From the sliding and multi-switched manipulation, the
high-voltage output is easily obtained rather than investigating
the selection of materials (conventional TENG devices, as shown
in Figs. S2 and S3 online). Notably, the Bennet doubler provides a
unidirectional current flow for charges accumulation resulting in
a high-voltage output. By leveraging the needle-plate configuration
to discharge, a dramatic pattern difference of the transient dark
current responding to VOCs is achievable. Further, to better iden-
tify the VOC molecules using ion mobility analyzer response, an
ML-enhanced tool (learn the uniqueness of different VOC mole-
cules from a range of parameters, i.e., number of peaks, frequency,
and amplitude) was adopted for augmented detection (Fig. 1e).
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Thus, according to the pattern of the dark current and the leverage
in a special type of tip-plate electrode configuration from SM-
TENG, the detection of a wide range of VOCs, such as methanol,
ethanol, acetone, and IPA, using an ion mobility analyzer was
achieved for early and fast detection at room temperature (RT).

3.2. Working mechanism and electrical performance of SM-TENG

Inspired by the mechanism of the Bennet doubler, the in-plane
mechanical structure of the SM-TENG was achieved through the
back and forth sliding and switches in a time sequence operation
(Fig. 2a). Notably, the backside of the dielectric materials (‘‘A”,
‘‘B”, ‘‘C”, ‘‘D”) was pasted with conductive layers (nickel conductive
textile was chosen due to its mechanism robustness). The initial
charges of the dielectric materials are generated by the triboelec-
tric friction. As shown in Fig. 2a(I), the electrode layers of dielectric
‘‘C” and ‘‘D” will attract charges from the ground due to electro-
static induction and triboelectric effect. The intermediate state is
the function where multi-switches are ‘‘off” to keep a separation
by the air (Fig. 2a(II) and a(IV)). With further sliding of the movable
plate, the electrodes on the backside of dielectric ‘‘D” and ‘‘B” will
obtain more charges from the ground to balance the charges due to
electrostatic induction of their dielectric films. As the movable
plate moves back to the initial state, more charges will accumulate
on ‘‘A” and result in a high-voltage output (from 1 to 2 Q). With
more operation cycles to SM-TENG, the charges on dielectric ‘‘A”
will multiply with increasing operation cycles (from 2 to 4 Q,
and more). Electrode ‘‘A” will continuously keep the charges accu-
mulation for high-voltage output until the limit of air breakdown.
Thus, the ultrahigh voltage output can be easily achieved on the
basis of the multi-switch manipulation in a time sequence opera-
tion, which is almost impossible for conventional TENG.

The characterization results of the electrical performance of dif-
ferent dielectric materials, the open-circuit voltage (Voc) and open-
circuit charge (Qoc) vs. different contact areas of the same (FEP vs.



Fig. 2. (Color online) SM-TENG and its electrical performance. (a) Schematic illustration of the working principle of SM-TENG. (b) Electrical performance of FEP vs. FEP with
different contact areas. (c) FEP vs. PMMA with different friction areas. (d) Voc from PTFE vs. FEP to present an unstable output. (e) Qoc from PTFE vs. FEP. (f) Voi from the
oscilloscope of 100 MX to describe the output performance. (g) Charges in reversal polarity phenomena between FEP and PTFE. (h) Voc from FEP vs. PMMA. (i) Qoc from FEP vs.
PMMA. (j) Voi from oscilloscope of 100 MX. (k) Operation from initial to a saturation status.
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FEP) and different triboelectric polarity materials (FEP vs. PMMA)
can be seen in Fig. 2b, c, respectively. A programmable electrome-
ter (Keithley model 6514) was used to conduct those parameters
(Voc and Qoc). The result shows that the same triboelectric material
(FEP vs. FEP) results in low charge transfer efficiency and small
voltage output. The reason for this phenomenon could be the
charge saturation during the friction. However, these materials
can still obtain a small value of initial charges even with the same
triboelectric materials. The electrical performance of the other
potential material, PTFE is shown in Fig. S4 (online), where PTFE
vs. PMMA exhibits much better electrical performance than PTFE
vs. FEP. If with the same or similar triboelectric materials, the
charges and the instantaneous voltage from the surface of the
materials would be a small value and in strange phenomenon
based on our observation. The obtained or loss charges might be
from the surface nanostructure with the triboelectric effect in per-
turbation, which results in a small value and strange phenomenon.
If Figs. 2b, c and S4a, b (online) are in the same Y scale, the curves
from Figs. 2b and S4a (online) would almost be in a flat line. The
same or similar triboelectric materials produced a quite small
charge output. An unstable output voltage was obtained from sim-
ilar triboelectric materials (PTFE vs. FEP) in SM-TENG (Fig. 2d, e).
The reason, as mentioned above, might be the low efficiency of
charge transfer between these similar triboelectric materials
(Fig. 2f). Voi was obtained from the oscilloscope with 1 MX resis-
tance (close to the plate side from the needle-plate configuration).
Instability and the charge in reversal polarity phenomena between
FEP and PTFE are shown in Fig. 2g, and its zoom-in is shown in
Fig. S5 (online). To describe the working performance of the SM-
TENG, the voltage and peak power by changing load resistance
are shown in Fig. S6 (online). Theoretically, charges on electrode
‘‘A” can accumulate infinitely without limit. However, it shows a
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maximum voltage output to the SM-TENG due to the air break-
down and the maximum charge storage ability of dielectric mate-
rials. To further investigate the electrical property of the chosen
material, the measurement of Voc, and accumulative Qoc of the
SM-TENG were conducted, and the results are shown in Fig. 2h, i.
45 nC and ~60 V were obtained for a cycle of sliding operation of
the SM-TENG with an area of 49 cm2. A larger contact area of the
SM-TENG can induce more charges and result in a larger output
voltage for each cycle (Fig. 2j). SM-TENG also presents good direc-
tional charge flow during the sliding operation. As D/B repeatedly
contacts and releases to A/C dielectric materials, triboelectric
charges get higher until charge saturation, which means the extra
charge dissipation in air or discharge onto the opposite materials
through the air. Normally, the stable output voltage comes after
5–6 times or more periodic sliding from our observation. When it
comes to saturation status, it assumes a stable status in needle-
plate configuration for plasma discharge. In addition, the detailed
information about the operation process of the SM-TENG from
the initial to the saturated output is shown in Figs. 2k and S7
(online).

3.3. Performance optimization of SM-TENG

Based on the theory of the triboelectric and electrostatic effect,
the size of the contact area and the thickness of the dielectric layer
can be optimized to meet a high-output voltage (Fig. S8 online).
The result shows that almost one time higher output voltage was
obtained with a thickness of 1 mm than that of 3 mm. The numer-
ical simulations for those factors were conducted and the corre-
sponding output electrical signals are shown in Fig. 3. The SM-
TENG presents good repeatability in charge accumulation
(Fig. 3a–c). We also observe that the charges are in a unidirectional



Fig. 3. (Color online) Performance optimization of SM-TENG. (a–c) Accumulative Qoc from 49, 24, and 10 cm2, respectively. Each increasing step comes from a cycle of sliding
in back and forth. (d–f) Voc from 49, 24, and 10 cm2, respectively. (g) Voi from oscilloscope of 100 MX. (h) Qoc vs. the thickness of the triboelectric dielectric. (i) Voc vs. the
thickness of the triboelectric dielectric.
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flow (step increase) during the sliding operation. It means that the
multi-switches work well for charge accumulation. If the sliding
stops, the output voltage would decay due to the discharges
(Fig. 3d–f). SM-TENG with a 1 mm dielectric layer can achieve
two times higher Voc than that of 3 mm. The voltage Voi from the
SM-TENG collected by an oscilloscope of 100 MX input impedance
presents ~1.5 times higher voltage than the device with the small-
est contact area shown in Fig. 3g. Furthermore, the thinner thick-
ness of the dielectric film, the higher the output voltage, and the
more accumulative charges from the SM-TENG would be obtained
(Fig. 3h, i). Higher power of 75 nC and 135 V from a cycle of oper-
ation in sliding was obtained from our observation. Thus, this
information provides an engineering solution to improve output
voltage with optimization in dielectric layer thickness and the con-
tact area.

3.4. Ion mobility analyzer and VOC mixture detection

With the high-voltage power from SM-TENG and its further
leverage in a special type of tip-plate electrode configuration, a
wide range of VOC molecule detection based on the ion mobility
phenomenon was proposed (Fig. 4a). Notably, the injected VOC
gases in the gas chamber could be either pure or mixed gases.
The ion mobility characteristic in the form of the dark current with
certain tip-plate electrode configurations presents different tran-
sient phenomena with various VOC species and their concentra-
tions, which could have the potential for fast and early VOC
detection. In this study, VOC gases were well pre-mixed in the
gas chamber before being injected into the needle-plate electrode
configuration. The unique patterns of the ions in the complex gas
environment are shown in Fig. 4b, c. Video S1 (online) depicts
the operation to get the ion mobility patterns. The high concentra-
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tion (VOCs, acetone) dramatically damped the drift time compared
with the low concentration. The optical image of the needles and
the tips is shown in Fig. S9 (online). The schematic diagram of
the ion discharges in VOCs and the corresponding dark currents
with drift time is shown in Fig. S10 (online).

To identify the sensing feasibility of mixed VOCs (Fig. 4d), two
different VOCs (i.e., ethanol and acetone) were well mixed in the
pre-mixture chamber for demonstration. If with other waste chem-
icals, the pattern of ion mobility would be changed as well. Owing
to the complex molecule-structure of both VOCs, the two VOCs
might present a cluster phenomenon but could still be identified
on the basis of our observations. With those VOC mixtures, differ-
ent kinds of patterns were measured (Fig. 4e, f). We assumed that
these similar patterns predicted the strong cluster of those similar
VOCs. More cycles of the low concentration measurement are
shown in Fig. S11a (online). An in-depth study of the dark current
pattern of ion mobility based on three different mixed VOC gases
(i.e., methanol, ethanol, and acetone) is shown in Fig. 4g, and the
unique dark current patterns from the mixed VOCs are shown in
Figs. 4h, i and S11b (online). The reason for choosing these three
VOCs lies in the characteristic of one carbon of VOC (methanol),
two carbons of VOC (ethanol), and three carbons of VOC (acetone),
which presented that the ion mobility analyzer is suitable for all
kinds of VOCs. VOC molecules would be much easier to cluster
due to the density of the VOCs. The patterns of dark current, as well
as concentrations of VOCs, can also be identified.

3.5. ML-enhanced ion mobility analyzer for VOC detection

The drift time of the ion would be markedly different in dis-
charge due to the different weights and volumes of the molecules
(Fig. 5a). Meanwhile, the large volume of the molecules would be a



Fig. 4. (Color online) VOCs and VOCmixture detection using ions mobility analyzer from SM-TENG. (a) Ion mobility analyzer platform for VOC detection using single or mixed
VOCs. (b, c) The dark current pattern of high and low concentrations, respectively. (d–f) Two kinds of mixed VOCs and their ion mobility patterns, high and low concentration,
respectively. (g–i) Three kinds of VOCs and their ion mobility patterns, high and low concentrations, respectively.
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damper to impede the motion of the small molecule, resulting in
the damping effect. Here, gas ions including air molecules and
VOCs are frequently colliding during the operation (almost no
net loss of energy from the collisions due to elastic). To improve
the sensing performance of VOCs based on the mechanism of ion
mobility in SM-TENG, the ML-enhanced method was adopted to
enhance VOCs sensing (Fig. 5b). By using the ML tool, the ion
mobility pattern would be easily identified for different VOC con-
centrations. The ML algorithm used is a one-dimensional convolu-
tion neural network (1D-CNN), which can automatically extract
features from different VOC output and provide a powerful classi-
fication between different categories. The architecture of the 1D-
CNN we used is shown in Fig. S12 (online). Notably, the ion mobil-
ity in the air pressure was measured (Fig. 5c). The molecules of O2

and N2 can be identified from the ion mobility system from our
observation. Thus, it is possible to distinguish the other chemical
molecules due to molecule weight in motion between the
needle-plate configuration (heavier than O2 and N2). If with the
other waste chemicals (heavier than O2 and N2) in a practical lab-
oratory or factory environment, the pattern of ion mobility would
be changed as well. To demonstrate the effect of the ML-enhanced
identification of ethanol and IPA in the aspect of the dark current
pattern, three different concentrations with typical dark current
patterns were described (Fig. 5d, e). A higher concentration of
the VOCs will induce a longer drift time (3 ms of high concentra-
tion to 0.5 ms of low concentration for ethanol, and 6 ms of high
concentration to 1 ms of low concentration for IPA). With the ML
tool, the recognition accuracy of different concentrations can reach
48.3% (Fig. 5f), which is reasonable considering the properties of
gas molecules. Each category has 50 samples, where 42 samples
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are used for training and 8 samples for testing. The data length
of each sample is 16,000. This ML-enhanced identification method
provides quick and automatic VOC recognition, which saves a lot of
manual interpretation and real-time calculation costs. It is inter-
esting that the environment and the median IPA show the highest
accuracy in ML. The reason for this high accuracy might be the
damping of VOCs and various molecule structures according to
weight properties, which results in higher accuracy in ML. To iden-
tify all kinds of VOC gases, typical VOCs had been chosen for the
measurement: VOCs with one carbon (methanol), two carbons
(ethanol), and three carbons (acetone). Further, even with the same
VOCs carbons (acetone and IPA), the ion mobility system can still
distinguish between them based on our observations.

For an in-depth study of the influence of the needle-plate elec-
trode configuration on ion mobility, we experimented with differ-
ent gap distances for VOC discharge. To quantify the discharge with
the gap distance, the numerical relationship between the gap of
the needle-plate and the output voltage was investigated
(Fig. S13 online), indicating that a smaller SM-TENG device can
induce a lower output voltage. Result also shows that a shorter dis-
tance of the air gap of the needle-plate configuration can induce a
stronger discharge in the gas chamber (~3 times more). To validate
the robustness of the ML-enhanced method with various needle-
plate electrode configurations, different air gaps (0.5 and
1.5 mm) were considered (Fig. 6a). The drift time of the ion in a
wide air gap is much longer than that of the narrow air gap
(Fig. 6b). The ion mobility in the air was tested (Fig. 6c). Owing
to the discharges of various VOC species and their different concen-
trations in the gas chamber, the ion mobility patterns are different
(Fig. 6d–f). The ion mobility patterns show significant differences



Fig. 5. (Color online) ML-enhanced ion mobility analyzer for VOC concentration detection. (a) Different ions and buffer effects in directional motion. (b) The ML-enhanced
method for VOCs. (c) The ion mobility in the air. (d) Typical pattern of dark current to ethanol, 2970, 1320, and 660 parts per million (ppm), respectively. (e) The typical
pattern of the dark current to IPA, 1300, 800, and 400 ppm, respectively. (f) ML-enhanced results of different concentrations to ethanol and IPA, respectively.

Fig. 6. (Color online) The gap distance of the needle-plate electrode configuration for ML-enhanced ion mobility identification. (a) Two different air gaps of the needle-plate
configuration. (b) The ions and buffer effect in directional motion in a long-distance air gap (~2 mm). (c) The ion mobility in the air with ~2 mm gap. (d) Typical pattern of dark
current to methanol, high and low concentration. (e) Typical pattern of dark current to ethanol, high and low concentration. (f) Typical pattern of dark current to acetone, high
and low concentration. (g) ML-enhanced results of different concentrations of methanol, ethanol, and acetone, respectively.
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Table 1
Comparison of the advantage of VOCs detection in our work and the current state-of-the-art.

Items Materials and
mechanism

Response &
recovery

Kinds of VOCs Sensing
environment

Mixture
detection

Portability External
power

Ref. [96] Pd/SnO2

Chem-iresistive
21 s, 230 s Ethanol or acetone 250 �C No Yes but

inconvenient
Yes

Ref. [97] rGO/WO3 Chem-
iresistive

14 s, 40 s Acetone or methanol RT No Yes but
inconvenient

Yes

Ref. [98] Molybdenum disulfide
(MoS2)
Chem-iresistive

10 min, not
mentioned

Toluene, hexane, ethanol, and acetone RT No Yes but
inconvenient

Yes

Ref. [99] rGO Chemiresistive 120 s, 176 s Ethanol, nonanal, and ethylbenzene RT No Yes but
inconvenient

Yes

Ref. [100] Resonant cantilever 60 s, 5 min Aniline or acetic-acid RT No Impossible Yes
Ref. [23] Plasma discharge <1 s Multi-compounds but without

Concentration
70 �C Yes No due to bulky Yes

and > 3 kV
Ref. [3] UV of ion mobility <1 s Methanol, ethanol, acetone, ethyl acetate,

diethylamine
96 �C and
700 mbar

No No due to bulky Yes and
>3 kV

Ref. [101] UV of ion mobility <1 s Acetone, toluene, butanone 120 �C No No due to bulky Yes and
>3 kV

Our work Plasma discharge 20 ms, 20 ms Methanol, ethanol, acetone, and IPA RT and air
pressure

Yes Yes No
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between different VOCs, such as methanol, ethanol, and acetone.
With the ML, the waste chemical concentrations of VOCs can easily
be identified based on their unique patterns (54.286% average). The
highest accuracy (65% and 70%, respectively) can be obtained on
ethanol due to the strong sense of its unique molecule structures
(Fig. 6g). Notably, we measured 100 samples of data for each cate-
gory. The data length of each sample is 16,000. Then we randomly
chose 80 samples of each category for training and 20 samples for
testing to assess the performance of the proposed ML tool on dis-
tinguishing the different VOC species and their concentrations.
Now, the data set has 700 samples, and the number is relatively
acceptable for a four-layer 1D-CNN structure. However, the accu-
racy could still be further enhanced in the future by supplying a
much large amount of data, as well as using a deeper neural
network.

Table 1 shows the advantages and disadvantages of the pro-
posed VOC detection and existing state-of-the-art. Compared with
the current VOC sensors (chemi-resistive, semi-conductor, and
frequency-based) in references [96–100], the proposed ML-
enhanced VOC plasma discharge sensors show both superfast
response (millisecond) and recovery. In addition, our sensor can
detect the multi-VOCs without any external power sources, which
is suitable for applications in IoT. Compared with the ion mobility
sensors in reference [3,23,101], we found that the ML-enhanced
VOC plasma discharge sensors showed relative tolerance in the
environment, such as the detection in RT and air pressure, whereas
the other method is unreachable. It also proposes atmospheric
low-temperature plasma driven by TENG, whereas plasma dis-
charge from other power sources was impossible with such low
temperature in operation. Further, the conventional method
resulting a large size of the system makes it impossible to fit the
applications in the IoT and with the ability of portability.

4. Conclusion

In summary, we proposed an ML-enhanced VOC concentration
detecting method using an SM-TENG-enabled ion mobility ana-
lyzer based on the multi-switched manipulation, which well
solved the weaknesses of existing plasma discharge systems, i.e.,
bulky, high-temperature operation, and inappropriate for VOC con-
centration detection. With the aid of the charge accumulation
mechanism, the SM-TENG could provide a high output voltage at
the order of ~600 V, which was difficult to be achieved by the con-
ventional TENG. With certain tip-plate electrode configurations,
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the voltage from SM-TENG was leveraged as the power source to
obtain plasma discharge patterns of various VOCs with different
ion mobility characteristics. We observed that the discharge pat-
tern for each VOC mixture was unique and repeatable, which could
be considered a strong basis for distinguishing different gases. To
improve the detection accuracy of the system for VOC monitoring,
an ML-enhanced tool was demonstrated to classify different VOC
concentrations based on specific features extracted automatically
from the ion mobility spectrometry data with an accuracy of
48.214%, which is reasonable considering the properties of gas
molecules. Moreover, the dependence between the transient
time-domain and the gap distance in needle-plate configuration
was discussed for air discharge to validate the robustness of the
ML-enhanced method, and an accuracy of 54.286% was obtained
with the gap distance of ~2 mm. It demonstrated that the proposed
multi-switched manipulation platform enables the detection of
various VOC species (methanol, ethanol, acetone, and IPA) with
the aid of AI technology, showing a portable real-time VOC-
monitoring solution with a rapid response and low power con-
sumption for future IoT-based environmental monitoring
applications.
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